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Multi-object tracking (MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial 
vehicle (UAV) is one of its typical application scenarios. Due to the scene complexity and the low resolution of mov-
ing targets in UAV applications, it is difficult to extract target features and identify them. In order to solve this prob-
lem, we propose a new re-identification (re-ID) network to extract association features for tracking in the association 
stage. Moreover, in order to reduce the complexity of detection model, we perform the lightweight optimization for it. 
Experimental results show that the proposed re-ID network can effectively reduce the number of identity switches, and 
surpass current state-of-the-art algorithms. In the meantime, the optimized detector can increase the speed by 27% 
owing to its lightweight design, which enables it to further meet the requirements of UAV tracking tasks. 
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The techniques of vision-based multi-object tracking 
(MOT) exploit the particular similarity metrics to match 
different objects in video sequence[1,2]. They have been 
proposed over the years and have been widely used in 
many applications, such as surveillance [3], traffic moni-
toring [4], autonomous driving, and unmanned aerial vehi-
cle (UAV) tracking. 

Throughout the years, MOT tasks were mainly per-
formed with tracking by detection paradigm, where ob-
jects ware detected by an object detector and fed to the 
object tracking method, which then dealt with the object 
association between previous frames and present one. 
With the emergence of deep learning-based neural net-
works (DNNs) [5], new state-of-the-art methods have been 
proposed in object vision-based tasks. Therefore, to im-
prove the object association step of tracking algorithm, 
convolutional neural networks (CNNs) have been ap-
plied to extract object appearance features, which are 
used to compute similarity probability between two ob-
ject’s feature maps [6]. 

Currently, more works focus on pedestrian target 
tracking, and UAV tracking for small targets still needs 
further research. However, for different general tracking 
tasks, UAV vision tracking has some new challenges. 
When the UAV flies at a certain altitude, the resolution 
and clarity become low, the scale of the tracked target on 
the ground becomes very small, and the target features 
and textures become blurred, which makes it difficult to 
extract the target features, resulting in the difficulty of 

target detection and tracking. Due to structural charac-
teristics of UAVs, most UAVs have limited computing 
resources. So how to develop a low complexity tracking 
algorithm with a high accuracy is a great challenge. To 
address these problems, we propose a new 
re-identification (re-ID) module learning mechanism. 
This is achieved by designing an inverted block com-
posed of multiple convolutional streams and attention 
mechanism, each detecting features at a certain scale. 
Moreover, a novel detector with lightweight module is 
used to balance the model complexity and performance 
to reach real-time requirement. 

We first provide a brief overview about the popular 
tracking by detection paradigm for MOT, and then in-
troduce the re-ID for data association in MOT.  

With the emergence of deep learning-based object de-
tectors, tracking by detection has become the most pop-
ular approach community[2,7]. Specifically, an object de-
tector is used to detect objects in each frame, then a sub-
sequent tracker is utilized to associate the objects across 
different frames. In terms of temporal information usage, 
existing MOT methods can be categorized into 
online[8-10] and offline methods[11,12]. Online methods 
process video sequences frame-by-frame and track ob-
jects by only using information up to the current frame. By 
contrast, offline methods process video sequences in a 
batch and can even utilize the whole video information. In 
this work, the newly proposed tracking model can be natu-
rally integrated into the online tracking by the detection 
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MOT system. 
Learning discriminative representations for objects is 

crucial to identity association in tracking [13]. The repre-
sentation can be used to re-identity lost objects that re-
appear after disappearing for a long period of time. Ap-
pearance similarity can be measured by the cosine simi-
larity of the re-ID features. Ref. [14] adopts a stand-alone 
re-ID model to extract appearance features from the de-
tection boxes. Different from Ref. [14], our proposed 
re-ID model improves the representation power of fea-
tures by adding multi-branch architecture and attention 
mechanism. Deployment of factorized convolution keeps 
the model lightweight with competitive performance. 

The main contributions of this work can be summa-
rized as follows. We propose a novel re-ID learning 
network, which adopts some effective strategies such as 
multi-scale learning, inverted block. We design a detec-
tor with lower computation. Compared to other detectors, 
the parameters and computations of the proposed detec-
tor are significantly reduced, while the performance 
keeps competitive. Both the re-ID learning and com-
pressed detector can be applied to existing MOT meth-
ods in a natural way. Experimental results demonstrate 
the effectiveness of the proposed network. 

In order to improve tracking ability for small targets, 
this paper designs a more powerful re-ID network termed 
aggregation network of inverted bottleneck (ANIB) to 
extract more robust features as appearance feature metric 
when employing association algorithm. The designed 
network follows the following principles. 

1. Using multi-path convolution to obtain features of 
different receptive fields is helpful to make model recog-
nize tasks from different scales. 

2. Using depth separable convolution replaces tradi-
tional convolution operation. After that, parameters and 
computation are significantly reduced while obtaining 
same receptive field. 

3. Using inverted blocks module replaces traditional 
bottleneck module. It is more difficult to lose informa-
tion when extracting features by convolution operations. 

4. A channel attention mechanism is introduced to 
make model more focused on useful channel features. 

We use multi-path convolution to extract features of 
different scales to adapt the model to different sizes of 
objects. We use a different number of 3×3 convolutions 
in each branch to obtain different receptive fields, while 
ensuring that feature maps of each output have the same 
size, so that they can be aggregated directly. In the 
meanwhile, in order to reduce the model parameters, a 
cheap 3×3 convolution is employed. The computation 
and parameters have been greatly reduced. This module 
enables our designed network to learn features of differ-
ent scales and enhance the robustness of model. 

ANIB is based on depth-wise separable convolution 
which factorize a standard convolution into a depth-wise 
convolution and a 1×1 convolution named point-wise 
convolution. The depth-wise applies a single filter to 

each channel feature. The point-wise convolution then 
applies a 1×1 convolution to combine the output of 
depth-wise convolution. The depth-wise separable con-
volution splits this into two layers. This factorization has 
the effect of drastically reducing computation and model 
size. Fig.1 shows how a standard convolution (a) is fac-
torized into a depth-wise convolution (b) and a 1×1 
point-wise convolution (c).   

 

 

(a) 

 
(b) 

 

(c) 

Fig.1 (a) Standard convolution filters; (b) Depth-wise 
convolution filters; (c) 1×1 convolution filters called 
point-wise convolution in the context of depth-wise 
separable convolution  

 
Assuming that the input feature is h w cx R   , for tra-

ditional convolution ,k k c cw R    the computation 
is 2h w k c c    , where h and w are the height and width 
of input feature respectively, k is the size of the kernels, c 
is the number of input channels, and c is the number of 
output channels. For depth-wise convolution   

1 ,k k cu R    the computation is 2 .h w k c   For 
point-wise convolution 1 1 c cv R    , the computation is 
h w c c   . Therefore, the total computation changes 
from 2h w k c c     to 2( ) ,h w k c c    and parame-
ters change from 2k c c   to 2( )k c c  . As can be 
seen from Eq.(1) and Eq.(2), under the condition of ob-
taining same receptive field, the use of depth separable 
convolution reduces the number of parameters and com-
putation to 21/ k compared with traditional convolution. 
Generally, we take k as 3. We call this module light 3×3. 
Fig.2 shows the structure.
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Fig.2 (a) Standard 3×3 convolution; (b) Light 3×3 
convolution (DW: depth-wise) 
 

The inverted bottleneck block is originally proposed in 
MobileNetv2 [15]. Its core idea is that using bottleneck 
block will make model lose many information features 
by compressing and then amplifying, while information 
features will be retained as much as possible by ampli-
fying and then compressing. With this idea, we intro-
duced inverted bottleneck block. A basic version is 
shown in Fig.3(a). We first use 1×1 convolution for di-
mensions upgrading, and then use lightweight convolu-
tion light 3×3 extract features. Finally, we use 1×1 con-
volution to compress convolution dimensions for ex-
tracting effective features. Fig.3(b) shows the aggrega-
tion network combined baseline inverted block with 
multi-path convolution. ANIB is built by a simple stack 
of this module. 

 

 

Fig.3 (a) Baseline inverted bottleneck blocks; (b) In-
verted bottleneck blocks (CA: channel attention) 

 
We added channel attention (CA) layer [16] after aggre-

gating features of different paths in each inverted block, 
which is used to assign different weights to correspond-
ing channels. By adding channel attention mechanism, 
the model parameter values are more focused on effec-
tive features. It is also conducive to pruning unimportant 
channels during model deployment, achieving the pur-
pose of lightweight network. After CA module in 

Fig.3(b) obtains the input features of previous aggrega-
tion layer, global average pooling is conducted in chan-
nel dimension, then reduce dimension through the first 
full connection layer, and upgrade dimension through the 
second full connection layer. After the first full connec-
tion layer, rectified linear unit (ReLU) is used as activa-
tion function, and the second full connection layer uses 
Sigmoid as activation function, so that output values are 
between [0,1]. Finally, multiply each channel with chan-
nel weight and output them. 

ANIB is built by a simple stack of inverted blocks, 
without carefully designing the width and depth for each 
layer. Details of the network structure are shown in 
Tab.1. ANIB can easily be deepened and enlarged to 
tradeoff between performance and speed. 
 
Tab.1 ANIB architecture with input image size of 
256×128 (s: stride) 

Stage Output ANIB 

conv1 
256×128×32 
128×64×32 

3×3 inverted blocks, s=2 
Max pooling, s=2 

conv2 
128×64×48 
64×32×48 

3×3 inverted blocks, s=2 
Max pooling, s=2 

conv3 64×32×48 3×3 inverted blocks, s=2 

conv4 
64×32×64 
32×16×64 

3×3 inverted blocks, s=2 
Max pooling, s=2 

conv5 32×16×64 3×3 inverted blocks, s=2 

conv6 
32×16×96 
16×8×96 

3×3 inverted blocks, s=2 
Max pooling, s=2 

conv7 16×8×96 3×3 inverted blocks, s=2 

conv8 
16×8×128 
8×4×128 

3×3 inverted blocks, s=2 
Max pooling, s=2 

GAP 1×1×128 Global average pooling 
FC 512 FC 

# Params 1.94M 
 

For multi-path convolution, ANIB is similar to Res-
Next [17] and Inceptionv1 [18], but it is significantly differ-
ent from them. For each convolution, they have different 
receptive fields, but they all use the same light 3×3 mod-
ules. We also follow the principle of inverted blocks to 
make the network more effective in extracting different 
scale features and lose less information in down sam-
pling. In addition, ANIB uses CA module to extract dif-
ferent channel features, which makes the model pay 
more attention to valuable features. Finally, we also use 
the depth separable convolution to replace the standard 
convolution, so the whole model is lightweight. 

The main lightweight ideas for parameter optimization 
in deep neural network include lightweight network, 
network pruning [19], knowledge distillation [20], quantiza-
tion [21], etc. In this paper, we choose to compress the 
model with lighter modules. 

Because YOLOv5 network structure contains a large 
number of residual modules, the feature maps generated 
by convolution contain many similar feature maps. These 



·0108·                                                                          Optoelectron. Lett. Vol.19 No.2 

feature maps can be obtained by a simpler method without 
expensive convolution operation, which can reduce 
model parameters and computation. In order to reduce 
convolution operations, this paper replaces residual block 
with Ghost-Bottleneck module in GhostNet [22]. 

Fig.4 shows the structure of Ghost bottleneck. Its main 
principle is to obtain similar feature maps by simple lin-
ear transformation and the idea of group convolution is 
adopted. Changing the number of groups into the number 
of channels becomes depth-wise convolution. Here, we 
learn from the idea of inverted residual module. The first 
ghost module is responsible for increasing the number of 
channels, and the second module is responsible for re-
ducing the number of channels. Ghost module can use 
fewer parameters to obtain same number and size of fea-
ture maps as ordinary convolution, which reduces model 
parameters and computation to a certain extent. 

 

 

Fig.4 (a) Ghost module; (b) Ghost bottleneck module 
 
We use the VeRi-776 vehicle re-ID dataset [23] as our 

performance evaluation benchmark. VeRi-776 contains 
more than 50 000 images of 776 vehicles. These images 
are taken by 20 cameras and cover an area of 1.0 km2 in 
24 h, which makes the dataset scalable enough for vehi-
cle re-ID related research. VeRi-776 dataset is divided 
into 37 778 training images, 11 579 test images and 
1 678 query images, respectively. 

A classification layer is employed on the top of ANIB. 
Training follows the standard classification paradigm 
where each person identity is regarded as a unique class. 
Cross entropy loss with label smoothing is used for su-
pervision. Training batch size and weight decay are set to 
64 and 5×10-4 respectively, while test batch size is set to 
128. Learning rate is set to 0.001 5. We train model from 
scratch with stochastic gradient descent (SGD) optimiza-
tion algorithm for 100 epochs. Image is resized to 
256×128. Data augmentation includes random flip and 
random erasing. 

Tab.2 shows the evaluation results of mainstream al-
gorithms and our proposed re-ID network on VeRi-776 
dataset. Experiments show that the re-ID network pro-
posed in this paper not only maintains lightweight but 
also has better performance than the network models 
with larger parameters and current mainstream light-
weight network model. Fig.5 shows the exemplary test 
results of our proposed model. It can be seen that most of 
queries are accurate, and there are a small number of 
errors in vehicles that are difficult to distinguish. 

Tab.2 Performance evaluation results 

VeRi Market1501 Duke 
Method 

R1 mAP R1 mAP R1 mAP 
Params 

Ref. [17] 69.9 41.1 63.9 43.5 46.7 28.4 22.03M 
Ref. [24] 78.7 41.2 70.6 48.8 54.5 36.4 24.69M 
Ref. [25] 80 45.4 83.2 55.6 65.2 45.2 2.97M 
Ref. [26] 81.4 44.6 73.3 51.1 73.6 48.4 1.46M 
ANIB 
(ours) 

87.2 49.6 82.9 62.7 73.1 51.5 1.94M 

 

 

Fig.5 Test results in VeRi-776 dataset 
 
From Tab.2, it can be seen that ANIB achieves state-of 

the-art performance on most datasets, outperforming most 
published methods by a clear margin. Moreover, our 
method uses a small-scale model. Compared with Ref. [24] 
of backbone network with nearly 24.7M parameters, 
ANIB has only 1.9M parameters. This proves the effec-
tiveness of multi-scale feature learning. ANIB outper-
forms mainstream lightweight networks in Ref. [15] and 
Ref. [26] by a large margin. It is noted that the three net-
works have considerable model parameters, which justify 
that the network we designed not only employs light-
weight, but also achieves competitive performance. Com-
pared with Ref. [17], which also uses multi-branch feature 
extraction structure, our method has better performance, 
mainly due to the use of CA layer, which makes model 
pay more attention to important features. 

Tab.3 evaluates our architectural design choices where 
our primary model is model 1. Compared with standard 
convolution, factoring convolution reduces the R1 mar-
ginally by 0.3% (model 3 vs. model 2). This means our 
architecture design maintains the representation power 
even though the model size is reduced by more than 3 
times. Compared with ResNeXt-like design, ANIB is 
transformed into a ResNeXt-like architecture by fusing 
different sizes of features, which refers to model 1. We 
observe the variant is clearly outperformed by the primary 
model, with 6.1%/2.7% difference in R1/mean average 
precision (mAP). This further validates the necessity of 
our multi-scale design. Employment of attention improves 
the representational power of a network by enabling it to 
perform dynamic channel-wise feature recalibration, with 
an increment of 2.3%/1.2% at R1/mAP. By turning the 
bottleneck block into inverted block, both the R1 and 
mAP increase by 1.5%/0.8%. As inverted block is enabled 
to retain more feature information following the upper 
module, it is advantageous to use inverted block. 
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Tab.3 Ablation experiment results (MS: multi-scale; 
DW: depth-wise separable convolution; IB: inverted 
block) 

VeRi 
Model MS DW  Attention IB 

R1 mAP 
1     77.6 45.4 
2     83.7 48.1 
3     83.4 47.6 
4     85.7 48.8 
5     87.2 49.6 

 
To reduce the parameters and computation in detection 

stage, the CSP bottleneck is replaced with Ghost bottle-
neck module. Comparison of model parameters before 
and after replacement is shown in Tab.4. The amount of 
model parameters is reduced from 7.28M to 4.13M, and 
computation is reduced from 17.1 giga floating-point 
operations per second (GFLOPS) to 9.9 GFLOPS, nearly 
half. At the same time, processing speed enhanced from 
20.8 ms to 15.9 ms while performance metric mAP is 
slightly lower than that of the primary detection network. 

 
Tab.4 Comparison of model parameters 

Model Module Params Computation mAP Speed 
CSP 7.28M 17.1 GFLOPs 0.802 20.8 ms 

YOLOv5s 
Ghost 4.13M 9.9 GFLOPs 0.792 15.9 ms 

 
In general, compared with the original network, YO-

LOv5 model with Ghost bottleneck still achieves com-
petitive performance, while reducing the parameters and 
computation to about half of the former, which proves 
the effectiveness and practicability of our improved 
model. 

This paper uses the UAVDT dataset [27] as the bench-
mark dataset. The benchmark includes three tasks, target 
detection, single target tracking and multi-target track-
ing. The UAVDT benchmark consists of 10 h of original 
videos, from which 100 video sequences of about 80 000 
representative frames are selected. Each sequence con-
tains 83 to 2 970 frames and annotates about 840 000 
bounding boxes for more than 2 700 vehicles totally. The 
selected video frames comprehensively consider the 
weather factors, flight altitude, camera angle, vehicle 
type and vehicle occlusion, which is more in line with 
the actual scene requirements and more challenging. 

We use the improved object detection network to ex-
tract targets, use the DeepSORT algorithm as the basic 

tracking algorithm, and embed ANIB to extract the fea-
tures as appearance metric for data association. During 
training, the initial learning rate is 0.01, SGD is used as 
the optimizer, and the momentum factor is 0.937. Set the 
weight decay to 5×10-4. Set the training batch size to 16 
and the input picture size to 640×640. Do not use 
pre-training weight. Start training from scratch, 100 ep-
ochs totally. 

Evaluation is carried out according to the following 
metrics. 
 Multi-object tracking accuracy (MOTA): Summary 

of overall tracking accuracy in terms of false posi-
tives, false negatives and identity switches. 

 Multi-object tracking precision (MOTP): Summary 
of overall tracking precision in terms of bounding 
box overlap between ground-truth and reported lo-
cation. 

 Mostly tracked (MT): Percentage of ground-truth 
tracks that have the same label for at least 80% of 
their life span. 

 Mostly lost (ML): Percentage of ground-truth tracks 
that are tracked for at most 20% of their life span. 

 Identity switches (IDSW): Number of times the 
reported identity of a ground-truth track changes. 

 Fragmentation (Frag): Number of times a track is 
interrupted by a missing detection. 

  Compared with baseline algorithm, ANIB improves 
detector and satisfies the requirement of real-time detec-
tion. Moreover, ANIB embeds an SOTA re-ID network 
to improve tracking performance. An overall comparison 
below evaluates the effectiveness of ANIB. Tab.5 shows 
the results of the different tracking algorithms on the 
UAVDT dataset. It can be seen that the proposed algo-
rithm is superior to other algorithms in MOTA, IDSW, 
Frag, and Hz metrics. And it’s competitive to the original 
algorithm in other metrics. On MOTA, our proposed 
method is improved by 2% and outperforms other meth-
ods. On IDSW, we reduce the number of identity 
switches by nearly 59% compared with other algorithms. 
IDSW is reduced by 43% with and without ANIB, which 
proves the validity of ANIB feature extraction. On the 
Frag metric, it is reduced by nearly 14% compared with 
other algorithms. In addition, the speed of the improved 
algorithm is increased by 27%, which can basically meet 
the real-time processing requirements. Fig.6 shows a 
tracking example of the proposed algorithm. 

Tab.5 Test results of tracking algorithms 

Method MOTA↑ MOTP↑ IDSW↓ MT↑ ML↓ Frag↓ Hz↑ 
R-FCN [28] 30.87 77.0 427 284 108 1 186 17.4 

SSD [29] 32.69 76.7 1 149 216 105 2 162 23.4 
Faster R-CNN [30] 40.68 75.2 567 324 94 812 21.4 

YOLOv5 (resnet50) 39.88 82.2 268 394 83 818 25.4 
YOLOv5 (ANIB) 40.21 82.1 151 392 84 772 26.5 

YOLOv5-ghost (resnet50) 42.18 80.4 312 390 86 734 31.2 
YOLOv5s-ghost (ANIB) 42.41 80.4 171 389 85 698 32.3 
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Fig.6 Tracking example on UAVDT dataset 
 
Aiming at the challenges in UAV tracking tasks, this 

paper designs a lightweight re-ID network to extract tar-
get appearance features for trajectory association, which 
can improve tracking algorithm performance for small 
targets. To solve the problem of limited computing re-
sources of UAV platforms, we greatly reduce the model 
parameters by using lighter modules. Experimental re-
sults show that our model greatly reduces the number of 
identity switches, and outperforms other methods on 
multiple metrics. 
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